欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(1)
  • 图书()
  • 专利()
  • 新闻()

Electronic Structure of New Superconducting Perovskite MgCNi3

Li CHEN , Hua LI , Liangmo MEI

材料科学技术(英)

The electronic structures of new superconducting perovskite MgCNi3 and related compounds MgCNi2T (T=Co, Fe, and Cu) have been studied using MS-Xα method. In MgCNi3, the main peak of density of states is located below the Fermi level and dominated by Ni d. From the results of total energy calculations, it was found that the number of Ni valence electron decreases faster for the Fe-doped case than that for the Co-doped case. The valence state of Ni changes from +1.43 in MgCNi2Co to +3.02 in MgCNi2Fe. It was confirmed that Co and Fe dopants in MgCNi3 behave as a source of d-band holes and the suppression of superconductivity occurs faster for the Fe-doped case than that for the Co-doped case. In order to explain the fact that Co and Fe dopants in MgCNi3 behave as a source of d-band holes rather than magnetic scattering centers that quench superconductivity, we have also investigated the effects of electron (Cu) doping on the superconductivity and found that both electron (Cu) doping and hole (Co, Fe) doping quench superconductivity exist. Comparing with the hole (Co) doping, there was no much difference between Cu and Co doping. This suggests that Co and Fe doping do not act as magnetic impurity.

关键词: Electronic structure , null , null

出版年份

刊物分类

相关作者

相关热词